Cyclooxygenase-2 generates the endogenous mutagen trans-4-hydroxy-2-nonenal in Enterococcus faecalis-infected macrophages.
نویسندگان
چکیده
Infection of macrophages by the human intestinal commensal Enterococcus faecalis generates DNA damage and chromosomal instability in mammalian cells through bystander effects. These effects are characterized by clastogenesis and damage to mitotic spindles in target cells and are mediated, in part, by trans-4-hydroxy-2-nonenal (4-HNE). In this study, we investigated the role of COX and lipoxygenase (LOX) in producing this reactive aldehyde using E. faecalis-infected macrophages and interleukin (IL)-10-knockout mice colonized with this commensal. 4-HNE production by E. faecalis-infected macrophages was significantly reduced by COX and LOX inhibitors. The infection of macrophages led to decreased Cox1 and Alox5 expression whereas COX-2 and 4-HNE increased. Silencing Alox5 and Cox1 with gene-specific siRNAs had no effect on 4-HNE production. In contrast, silencing Cox2 significantly decreased 4-HNE production by E. faecalis-infected macrophages. Depleting intracellular glutathione increased 4-HNE production by these cells. Next, to confirm COX-2 as a source for 4-HNE, we assayed the products generated by recombinant human COX-2 and found 4-HNE in a concentration-dependent manner using arachidonic acid as a substrate. Finally, tissue macrophages in colon biopsies from IL-10-knockout mice colonized with E. faecalis were positive for COX-2 by immunohistochemical staining. This was associated with increased staining for 4-HNE protein adducts in surrounding stroma. These data show that E. faecalis, a human intestinal commensal, can trigger macrophages to produce 4-HNE through COX-2. Importantly, it reinforces the concept of COX-2 as a procarcinogenic enzyme capable of damaging DNA in target cells through bystander effects that contribute to colorectal carcinogenesis.
منابع مشابه
Commensal bacteria drive endogenous transformation and tumour stem cell marker expression through a bystander effect
OBJECTIVE Commensal bacteria and innate immunity play a major role in the development of colorectal cancer (CRC). We propose that selected commensals polarise colon macrophages to produce endogenous mutagens that initiate chromosomal instability (CIN), lead to expression of progenitor and tumour stem cell markers, and drive CRC through a bystander effect. DESIGN Primary murine colon epithelia...
متن کاملCommensal-infected macrophages induce dedifferentiation and reprogramming of epithelial cells during colorectal carcinogenesis
The colonic microbiome contributes to the initiation of colorectal cancer through poorly characterized mechanisms. We have shown that commensal-polarized macrophages induce gene mutation, chromosomal instability, and endogenous transformation through microbiome-induced bystander effects (MIBE). In this study we show that MIBE activates Wnt/β-catenin signaling and pluripotent transcription facto...
متن کاملTrans-4-hydroxy-2-nonenal inhibits nucleotide excision repair in human cells: a possible mechanism for lipid peroxidation-induced carcinogenesis.
Lipid peroxidation (LPO) is a cellular process that commonly takes place under normal physiological conditions. Under excessive oxidative stress, the level of LPO becomes very significant, and a growing body of evidence has shown that excessive LPO may be involved in carcinogenesis. Trans-4-hydroxy-2-nonenal (4-HNE) is a major product of LPO, and its level becomes relatively high in cells under...
متن کاملEnantioselective oxidation of trans-4-hydroxy-2-nonenal is aldehyde dehydrogenase isozyme and Mg2+ dependent.
trans-4-Hydroxy-2-nonenal (HNE) is a cytotoxic alpha,beta-unsaturated aldehyde implicated in the pathology of multiple diseases involving oxidative damage. Oxidation of HNE by aldehyde dehydrogenases (ALDHs) to trans-4-hydroxy-2-nonenoic acid (HNEA) is a major route of metabolism in many organisms. HNE exists as two enantiomers, (R)-HNE and (S)-HNE, and in intact rat brain mitochondria, (R)-HNE...
متن کاملFormation of cyclic adducts of deoxyguanosine with the aldehydes trans-4-hydroxy-2-hexenal and trans-4-hydroxy-2-nonenal in vitro.
trans-4-Hydroxy-2-hexenal (t-4HH), a reactive metabolite isolated from the pyrrolizidine alkaloid senecionine, and trans-4-hydroxy-2-nonenal (t-4HN), a product of lipid peroxidation, reacted nonenzymatically with deoxyguanosine at pH 7.4 at 37 degrees C in vitro with each compound yielding two pairs of diastereomeric adducts. Adducts were isolated using reverse phase high-performance liquid chr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cancer prevention research
دوره 6 3 شماره
صفحات -
تاریخ انتشار 2013